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1. INTRODUCTION

Our basic aim here is to extend and improve the error bounds for spline
and L-spline interpolation recently given by Swartz and Varga [11]. In so
doing, we also extend some recent results of Scherer [9]. To illustrate one
such improvement, consider the interpolation of a given function! E Ck[a, b],
with 0 :S; k < 2m, by a smooth polynomial spline s E C2m-2[a, b], of local
degree 2m - 1 on each segment of a uniform partition L1 of [a, b], where s
is uniquely determined from! by means of

(f - S)(Xi) = 0, 1 :S; i :S; N - 1,

Di(f - s)(a) = Di(f - s)(b) = 0 for O:S; j :S; min(k, m - 1), (1.1)

Dis(a) = Dis(b) = 0 if k < j :S; m - 1,

with Xi = a + ih, h = (b - a)/N, 0 :S; i :S; N. It is known from [11, Theo
rem 7.4] that there exists a constant K, independent of! and h, such that

Khk-i (Dkj, h) >- \11 Di(f - s)lk,,[a,b] , 0 :S; j :S; k, (1.2)
Woo , y-- III Dis lk"la,b] , if k < j :S; 2m - 1,

where Woo denotes the usual Loo-modulus of continuity. IffE W'l/'[a, b] with
1 :S; k :S; 2m, and 2 :S; p :S; 00, one can deduce from (1.2) (cf. [11, Corol
lary 7.5]) that

Khk-H(l/q)-(l/p) II D'iIILpla,b]

:> III Di(f - s)IILqla,b] , 0 :S; j :S; k - 1, p:S; q :S; 00, (1.3)
y-- II Dis IIL.la,b] , if k - 1 < j :S; 2m - 1, p:S; q :S; 00.
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For 0 ~ k < 2m and 2 ~ p ~ 00, the above results can be improved and
extended (cf., Theorem 6.2) to

o ~ j ~ k- 1 if k > 0, P ~ q ~ 00,

j = k, p = q, (1
k < j ~ 2m - 1, p ~ q ~ 00,

where W p denotes the Lp-modulus of continuity (cf. (2.2)), and § EO C2m- 2(a, b]
is again a smooth polynomial spline, of local degree 2m - 1 on each segment
of Lt, which interpolatesJin a manner similar to (l.l) (cf. (6.9)).

We shall also obtain here improved interpolation error bounds for
L-spline interpolation (Section 4), Hermite L-spline interpolation (Section
and an improved stability analysis for L-spline and Hermite L-spline inter
polation (Section 5), as originally considered in [11]. In Section 6, we extend
the results of [11] concerning polynomial spline interpolation on uniform
partitions of [a, b] for general boundary interpolation of the second integral
relation type (cf. (6.4)). Finally, in Section 7, we give some improved inter
polation error bounds for smooth spline interpolation, where the spline. is
locally of even degree on each segment of the partition, which extend certain
recent results of Scherer [9].

2. NOTATION

For - 00 < a < b < + 00, and for any extended real number p satisfying
I :(: p ~ 00, let Lp[a, b] denote as usual the Banach space of real-valued
Lebesgue-measurable functionsJdefined on [a, b] such that f: If(t)IP dt < 00

if 1 :(: p < 00, and such that J is essentially bounded on [a, b] if p = + 00,

endowed with the norm

I(f
b )l/P

IIJII
= If(t)IP dt , 1 ~ P < 00,

Lp[a,b] a

ess. sup{1 f(t)l: t EO [a, bn, p = 00.

More generally, Wpk[a, b], with k a positive integer and I ~ P :(: 00, denotes
the Sobolev space of all real-valued functions f defined on [a, b] whose
(k - l)st derivative is absolutely continuous, and for which Dkj EO Lp[a,
(Here, Dk _ (djdx)k.) We also set WpO[a, b] = Lp[a, b]. The norm on
Wpk[a, b] is given, as usual, by

k

IIJllw/[a,b] = L II D1'IILp[a,b] •
j~O
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For any fE W/[a, b], it is well known (cf. Hestenes [6] and Whitney [14])
that f can be extended to a function j in W z/"[2a - b, 2b ~ a]. One way of
concretely achieving this is to set (cf., Johnen [7])

k

j(x) = L cd(b + 2-i (b - x)),
i=O

= j(x),
k

= L cd(a + 2-i(a - x)),
i=O

xE(b,2b - a],

X E [a, b],

X E [2a - b, a),

where the real numbers ci , 0 ~ i ~. k, uniquely solve the following
Vandermond system of linear equations:

k

L cl-2)-ii = 1,
i=O

o ~ i ~ k.

We remark that the mappingf~ f, as defined in (2.1), is a bounded linear
transformation from W/[a, b] to W/[2a - b, 2b ~ a]. We shall assume
throughout that fE W'j)k[a, b] (k ~ 0 and 1 ~p ~ (0) is extended by
means of (2.1), if values ofj(x) arerequired for x E [2a - b, 2b - a] - [a, b].

With the above convention, for any f E L'j)[a, b] and for any 0 < t ~ b - a,
we set

wif, t) = sup I(Jb If(x + h) - j(xW dx)l/'j) I, (2.2)
Ihl';;t a \

where w'j)(f, t) is called the L'j)-modulus of continuity of f on [a, b]. As is
well known, (cf. Achieser [1]) w'j)(f, t) is a nondecreasitlg function of t, for
which

lim w'j)(f, t) = 0
t,J,O

I ~ p < 00,

P = 00,
(2.3)

where Ck[a, b], k ~ 0, denotes the set of all real-valued functions get),
defined on [a, b], such that Dig is continuous on [a, b] for all 0 ~ i ~ k.
In addition, if f E WT l[a, b] with 1 ~ T :(i p, it can be verified, upon repre
senting the integral of (2.2) as an appropriate sum, each term of which is
an integral over an interval of length at most t, that

W'j)(f, t) ~ 4t1+(1/pHl/T) II DfIILT[a,b] .

For any 0 < h ~ 2(b - a) and for any f E L'j)[a, b], we define

(2.4)

1 fW+h!2
fh(X) = -h J(t) dt,

w-h/2
X E [a, b], (2.5)
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as the Stekloff function off (cf. Achieser [1]). With Fubini's Theorem and
the HOlder inequality, it directly follows from (2.2) and (2.5) that

(2.6)

More generally, if fE W,,/'[a, b], then evidently jh E W:+l[a, b] for any
o< h ~ 2(b - a), and, moreover, from (2.5) we verify that

X E fa, b], °~ j ~ k.

Thus, from (2.6) and (2.7), ifjE Wpk[a, b], then

Ii Di(f - fh)IILp[a,bJ ~ wp(Dij, hj2), 0 ~ j ,s:; k. (2.8)

Finally, for j E W/[a, b], it follows from (2.5) that

Dk+1jh(X) = (ljh){Dkf(x + hj2) - D"f(x - hj2)}

for almost all x in [a, b], from which we deduce that

II Dk+1jh IILp[a,bJ ~ (ljh) wp(Dicf, h).

For a positive integer N,

Ll: a = Xo < Xl < ... < X N = b

(2.9)

(2.10)

denotes a partition of [a, b] with knots Xi . The collection of all such partitions
of [a, b] is called f!lJ(a, b). We define .2f = max{(xi+l - Xi): 0 ~ i ~ N - I}
and J = min{(xi+l - Xi): °~ i ~ N - I} for each partition Ll of the
form (2.10). For any real number a with a;::?: 1, f!lJa(a, b) then denotes the
subset of all partitions Ll in f!lJ(a, b) for which.2f ,s:; aJ. In particular, f!lJI(a,
is the collection of all uniform partitions of [a, b].

If 7Tn denotes the collection of all real algebraic polynomials of degree
at most n, then for any nonnegative integers nand m with n ;::?: m ;::?: 0, the
polynomial spline space Sp(n, m, Ll) is defined (cf. Scherer [9]) by

Sp(n, m, Ll) = {sex): s E Wwm[a, b], sex) f37Tn for X E (Xi, Xi+l)'

i = 0, 1, ..., N - I}. (2.11)

We remark that Sp(n, m, Ll) is a finite-dimensional subspace of W"m[a, b].
If m ;::?: 1, then as Wwm[a, b] C em-l[a, b], each element of Sp(n, m, .1) is in
em-lea, b].

Since we shall make use of the related concept of L-splines, we describe
them briefly. Given the differential operator L or order m,

m

Lu(x) - L: Ci(X) Diu(X),
i~O

m;::?: 1,
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where Ci EO Ora, b], °~j ~ m, with cm(x) )00 >0 for all x E [a, b], and
given a partition ..1 of the form (2.10), for N> 1 let Z = (Z1 , Z2 , ••• , ZN-1),

the incidence vector, be an (N - I)-tuple of positive integers with 1 ~ Zi ~ m,
1 ~ i ~ N - 1. Then, the L-spline space Sp(L, ..1, z) is (cf. Ahlberg, Nilson,
and Walsh [2] and Schultz and Varga [8]) the collection of all real-valued
functions w defined on [a, b] such that

L*Lw(x) = 0, X E (a, b) - {Xi}~\

for °~ k ~ 2m - 1 - Zi ,

(2.12)
1 ~ i ~ N - 1,

where L* is the formal adjoint of L. From (2.12), we see that

Sp(L, ..1, z) C w;m-"[a, b] where fL = max{zi: 1 ~ i ~ N - I}. (2.13)

Moreover, on comparing the definitions of (2.11) and (2.12), we see that
Sp(Dm, ..1, z) = Sp(2m - 1, 2m - I, ..1) if z = (l, I, ... , I), where 1 ~ I ~ m.

In what is to follow, we shall denote throughout any generic constant
which is independent of the functions considered and is independent of the
maximum mesh spacing .3, by the symbol K. These constants, however, in
general do depend upon n, m, a, b, the various norms and orders of deriva
tives used, as well as upon a if ..1 E ;J!Ja(a, b).

3. BASIC COMPARISON FUNCTIONS

As in Swartz and Varga [11], the key idea here is an elementary one,
based on the triangle inequality. From known interpolation errors for
smooth functions g, error bounds for less smooth functions,/, are determined
as follows. A smooth piecewise polynomial interpolant g off is constructed,
and bounds for f - g are determined (Theorem 3.5). A spline interpolant, s,
of f is then defined, which is also the spline interpolant of this smooth g.
Then, bounds forf - s will follow from known bounds forf - g and g - s.

To begin, we state an interpolation result of Swartz and Varga [11, Corol
lary 3.3].

LEMMA 3.1. GivenfE W~+l[a, b] with °~ k < 2m, and given ..1 E ;J!Ja(a, b),
let gbe the unique interpolant off in Sp(4m + 1, 2m + 1, ..1) such that

Di(f - g)(Xi) = 0,

Dig(Xi) = 0,

°~ j ~ k, °~ i ~ N,

k < j ~ 2m, °~ i ~ N.
(3.1)
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Then,

K(J)k+1-H(l/q)-(l/P) II Dk+YIILp[a,b]

~ \11 D~(j - g)IILq[a,b] , .0 ~ j ~ k, p ~ q ~ 00, (3.2)
III DJg IILq[a,b] ' k <.1 ~ 2m, p ~ q ~ 00.

We remark that since II f IIL.[a,b] ~ (b - a)(l/q)-(l/P) II f IILp[a,b] for any
f EO Lp[a, b] and for any q with 1 ~ q ~p, the upper bounds of (3.2) can
be trivially extended to the full range of q, i.e., 1 ~ q ~ 00, simply by
replacing the exponent of 2f in (3.2) by k + 1 - j + minCO, (llq) - (lIp)).
This same extension of course applies to all subsequent bounds developed.

With Lemma 3.1, we prove the following:

(3.3)
p = q,
p ~ q ~ 00.

LEMMA 3.2. GivenfE W/[a, b] with 0 ~ k < 2m, and given Ll E f!lJa(a,
let gbe the unique interpolant offh (defined in (2.5)) in Sp(4m + 1, 2m + 1,
in the sense of (3.1). With h = 2f, then

K(2f)k-H(l/q)-(l/P) wiDkj, 2f)

:>- \Ii Dk(f - g)IILp[a,b] , k = j,
~ Ii! Djg IILq[a,b] , k < j ~ 2m,

Proof. To establish the first inequality of (3.3), the triangle inequality
gives

II Dk(f - g)IILp[a,b] ~ II Dk(f - fh)IILp[a,b] + II Dk(fh - g)IILp[a.b]' (3.4)

Since g is the unique interpolant offh E W;+l[a, b] in Sp(4m + I, 2m + 1,
in the sense of (3.1), the last term of (3.4) can be bounded above from (3.2)
of Lemma 3.1 by K2f II Dk+Yh IlL [a.b] . But, it follows from (2.9) with h = Lf
that II DIC+Yh IILp[a,b] ~ (2f)-1 wib''/, 2f), whence

II Dk(fh - DIILp[a,b] ~ KwiDkj, .21).

Similarly, from (2.8) and the nondecreasing property of wp(D''/, t), we have
that

which then gives the desired first inequality of (3.3). The second inequality
of (3.3) similarly follows from (2.9) and the second inequality of (3.2) Q.E.D.

The next lemma is well known, but for completeness, a short proof is given.

LEMMA 3.3. For u EO Wl[c, d] where - 00 < c < d < 00, assume that
there is some Xo EO [c, d]for which u(xo) = O. Then,for any q with 1 ~ q ~ 00,

II U IIL.[e,d] ~ (d - C)!+(l/q)-(l/P) II Du IILp[C,d] . (3.5)
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o ,s;; j ,s;; k - 1 if k > 0, O,s;; i ,s;; N,

o ,s;; i ,s;; N, (3.6)

k < j ,s;; 2m, O:S::; i ,s;; N.

Proof Clearly, II U IILq[e,d] ,s;; (d - c)llq II U IIL",[e,d] = (d - c)llq I u(~)1 for
some ~ E [c, d]. Since u(g) = f~ Du(t) dt, then from Holder's inequality,s 0I u(~)1 ,s;; I ~ - Xo II-lip (f",o IDu(t)IP dt)l/p ,s;; (d - C)l-l/P II Du IILp[e,d] , whence
II u IILq[e,d] ,s;; (d - c)l+<llq)-(l/p) II Du IIL,,[c,d] . Q.E.D.

The result of Lemma 3.3 can be immediately applied as follows:

COROLLARY 3.4. Given fE Wpk[a, b] with O,s;; k < 2m, and given
.1 E flJa(a, b), let g be the unique interpolant off in Sp(4m + 1, 2m + 1, .1),
such that

Dj(f - g)(Xi) = 0,

Dk(fh - g)(Xi) = 0,

Djg(Xi) = 0,

If h = 3 and if k > 0, then

K(3)k-H (1(q)-(1/P) II Dk(f - g)IILp[a,b]

;? II Dj(f - g)IILq[U,b] , 0 ,s;; j ,s;; k - 1, p,s;; q ,s;; 00. (3.7)

Proof If k > 0 and if 0 ,s;; j ,s;; k - 1, then from (3.6), Dj(f - g)(Xi) = 0,
o ,s;; i ,s;; N. Since Dj(f - g) E W;-j[a, b], the inequality of (3.5) can be
applied on each interval [Xi, Xi+l], 0 ,s;; i ,s;; N - 1, of [a, b], which gives,
for p ,s;; q ,s;; 00,

Ilf - g IILq[a,b] ,s;; 311 D(f - g)IILq[a,b] ,s;; ... ,s;; (3)k-l ll Dk-l(f - g)IILq[a,b]

,s;; K(3)k+(1Iq)-(1/P) II Dk(f - g)IIL,,[a.b] ,

from which (3.7) follows. Q.E.D.

It is not difficult to show that the unique interpolant g in Sp(4m + 1,
2m + 1, .1) of j, in the sense of (3.6), has the following representation: for
X E [Xi, Xi+l], and hi = Xi+l - Xi , then for k > 0,

k-l Djf(x) . h·k Jl (X - x· )
g(x) = I 'f' (X - Xi)J + (k ~ l)f Q -h.'; t Dkf(Xi + hit)dt

j~O J. . 0 •

+ hl [Dkfh(Xi) . rpO,k (X h. Xi) + Dkfh(Xi+l) . rpu (X h. Xi)J, (3.8)
• t

where (cf. Swartz and Varga [11]) rpO,k(X) and rpu(x) are the unique poly
nomials of degree 4m + 1 such that

Djrpi,k(O) = OJ,k . Oi,O , Djrpi,k(l) = OJ,7< . Ou , 0 ~ j ~ 2m, i = 0, 1,
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and where Q(y; t), for t E [0, 1], is the unique polynomial interpolation, as
a function of y, of (y - t)~-1 such that Q(y; t) is a polynomial of degree
4m + 1 in y with

O<Oj<k I
k <OJ <02mj'

1= 0 or 1,

where Yo = 0 and Y1 = 1, and Dy denotes differentiation with respect to the
first variable y. Similarly, the unique interpolant g in Sp(4m + 1, 2m + 1, Ll)
offh' in the sense of (3.1), has the following representation: for x E [Xi,

and for k > 0,

k-1 Dil' ( ) h k 1
-( ) _ '\' J h Xi ( )i I i f Q (X - Xi. ) Dk f ( + h ) do
g X - i~O j! X - Xi I (k _ 1)! 0 ~' t '}h Xi it,

(3.9)

For the case k = 0, the representations of (3.8) and (3.9) remain valid with
the sum and integral terms deleted.

With these representations for g and g, we now prove the main result of
this section, which will be repeatedly used in subsequent developments.

THEOREM 3.5. GivenfE W/[a, b] with°<0 k < 2m, and given Ll E f?J,ia, b),
let g be the unique interpolant off in Sp(4m + 1, 2m + 1, Ll), in the sense
of (3.6). Then, with h - 3,

III Di(f - g)IILq[a,b] , °<OJ <0 k - 1 if k > 0,
~ II Dk(f - g)IILp[a,b] , j = k, p = q,

II Dig IILq[a,b] , k < j <0 2m, p <0 q <0 00.

p <0 q <0 00,

(3.10)

Proof Assume first that k = 0. If g is the unique interpolant of fh in
Sp(4m + 1, 2m + 1, Ll), in the sense of (3.1), it follows from (3.6) that
g = g. Hence, the inequalities of (3.3) for the case j = k = ° directly
establish the second and third inequalities of (3.10).

Next, assume that 0 < k <2m. To establish the first and second inequali
ties of (3.10), it is sufficient, because of (3.7) of Corollary 3.4, to show that

(3.1
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Again, if g is the unique interpolant of fh in Sp(4m + 1, 2m + 1,..:::1) in the
sense of (3.1), then by the triangle inequality,

II Dk(f - g)IILp[a,b] ~ II Dk(f - g)IILp[a,b] + II Dk(g - g)IILp[a,b]' (3.12)

The first term on the right of (3.12) is, from the first inequality of (3.3) of
Lemma 3.2, bounded above by KWz,(Dkf, 21). To bound the last term of
(3.12), we make use of the representations of (3.8) and (3.9) for g and g.
For any x E [Xi, Xi+1], and for any k ~ j ~ 2m, it follows from (3.8) and
(3.9) that

D\g - g)(x)

= (k~-i1)! rD/Q (~~iXi ; t) {Dkfixi + hit) - Dkf(Xi + hit)} dt.

Because Dy~Q(y; t) is uniformly bounded on [0, 1] X [0, 1] for any°~ I ~ 2m, then by HOlder's inequality,

Upon integrating the above expression with respect to x, summing on t,°~ t ~ N - 1, and upon applying Jensen's inequality, it follows that

II Di(g - g)IILq[a,b] ~ K(3)k-i+(1/Q>-<1/P) [I Dk(fh - f)IILp[a,b] ,

k~j~2m, p~q~oo.

Using (2.8), this implies that

II Di(g - g)IILq[a,b] ~ K(3)k-i+(l/Q>-<1/P) wz,(Dkj, 3),

k ~ j ~ 2m, p ~ q ~ 00. (3.13)

Thus, with j = k and p = q, then II Dk(g - g)IILp[a,b] ~ KwiDkj, 3), which
establishes the first and second inequalities of (3.10).

Finally, to establish the third inequality of (3.10) when °< k < 2m and
p ~ q ~ 00, we have by the triangle inequality that

k < j ~ 2m. (3.14)

The inequality of (3.13) then suitably bounds the first term on the right of
(3.14), and the second inequality of (3.3) then suitably bounds the last term
of (3.14). Q.E.D.
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4. L-SPLINE INTERPOLATION

(4,1)

q = 00.

Here, as well as in subsequent developments, we make use of the following
modified convention. If LI E f!J(a, b) and if Dig E Lq[Xi , Xi+l] for each sub
interval [Xi, Xi+l] of [a, b] defined by Ll, then II Dig [ILq[a,b] is defined by

II Dig IILq[a,b] = (~l II Dig Iltq[x i ,Xi+l]t

q

, 1 ~ q < 00,

= max(11 Dig IILoo[x;,xH1J: °~ i ~ N - 1),

For the L-spline spaces Sp(L, Ll, z) as defined in Section 2, we state an
interpolation result of Swartz and Varga [11, Corollary 3.6].

LEMMA 4.1. Given f E W~+l[a, b] with °~ k < 2m and 2 ~ p ~ 00, and
given LI E f!Ja(a, b), let s be the unique interpolant off in Sp(L, Ll, z) such that
for Zo = m ZN,

Di(f - S)(Xi) = 0,

DiS(Xi) = 0,

°~ j ~ minCk, Zi - 1), 0 ~ i ~ N,

if k <j ~ Zi - 1, 0 ~ i ~ N,
(4.2)

then,

K(3)k+l-H(ljql-(lj2l II fll W;H[a,b]

;:? !II Di.(f - s)IILq[a.b] , k °~ j ~ k, PI ~ q ~ 00, (4.3)
III DJs IILq[a,b] , if <j ~ 2m - , p ~ q ~ 00.

For polynomial splines, i.e" L = Dm, Ilfllw:+l[a,b] can be replaced in (4.3)
by II Dk+VIILp[a,b] .

The following application of Theorem 3.5 is then an improvement of the
above result.

THEOREM 4.2. Given fE Wpk[a, b] with 0< k < 2m and 2 ~p ~ 00,

and given Ll E f!Ja(a, b), let S be the unique interpolant off in Sp(L, LI, z) such
that for Zo = m = Z N ,

Di(f - S)(Xi) = 0,

Dk(fh - S)(Xi) = 0,

Dis(xi ) = 0,

o~j ~ min(k - 1, Zi - 1) if k > 0, °~ i ~ N,

if k ~ Zi - 1, 0 ~ i ~ N, (4.4)

if k < j < Zi - 1, 0 ~ i ~ N.

Then, with h = 3,

K(3)k-H(ljq>-<lj2l {Wp(Dkj, 3) + 3 '1Ifllw/[a,b]}

III Di(f - s)IILq[a,b] , 0 ~j ~ k - 1. (f k > 0, P ~ q ~ 00,

;:? II Dk(f - s)IILp[a,b] , j = k, p = q, (4.5)
II DiS IILq[a,b] , if k < j ~ 2m - 1, p ~ q < 00.
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For polynomial splines, i.e., L = Dm, the term 3 ·ll/llwpk[a.b] can be
deleted in (4.5).

Proof Let g be the unique interpolant ofI in Sp(4m + 1, 2m + 1, Lt) in
the sense of (3.6). Consider first the special case k = O. By the triangle
inequality,

111- s IILp[a.b] < III - I" IILp[a.b] + III" - g IILp[a.b] + II g - s IILp[a.b] • (4.6)

From (2.6), the first term on the right of (4.6) is bounded above by wif, 3).
Next, since I" E W/[a, b] and since the unique interpolant g of I" in
Sp(4m + 1, 2m + 1, Lt) in the sense of (3.1) is such that g = g, then upon
applying (2.9) and (3.2) of Lemma 3.1 for the case q = p and j = k = 0,
we similarly have that III" - g IILp[a,b] < Kw,p(f, 3). Next, since s is also by
definition the unique interpolant of g in Sp(L, Lt, z) in the sense of (4.2)
with k = 0, the bounds of (4.3) of Lemma 4.1 imply that

No~, II Dg IILp0.b] < K II DI" IILp[a.b] from (3.2), so that II Dg IILp[a.b] <
K(Lt)-l wif, Lt), using (2.9). Similarly from (3.10),

Thus,

II g Ilw/[a,b] = II g IILp[a.b] + II Dg IILp[a,b] < K(3)-1 . wif, 3) + 1I/IILp[a,b] ,

(4.8)

and combining the above inequality with (4.7) yields

The above bound, in conjunction with the other bounds for (4.6), then
gives that 1[1 - S IILp[a,b] < K(3)(1/P)-(1/2) {wp(f, 3) + 3 '1I/IILp[a,b]}, the
desired second inequality of (4.5) for the case k = O. Finally, to obtain the
desired third inequality of (4.5) for the case k = 0, one simply combines the
second inequality of (4.3), i.e., [I Djs IILq[a,b] < K(3)1-H(1/q)-(1/2) II g Ilwp1[a,b] ,
with (4.8).

Assume now that 0 < k < 2m. Write Dj(1 - s) = Dj(f - g) + Dj(g - s)
or Djs = Dj(s - g) + Djg, where g is the unique interpolant of I in
Sp(4m + 1, 2m + 1, Lt) in the sense of (3.6). Because of the inequalities of
(3.10) of Theorem 3.5, it suffices to suitably bound Dj(g - s) and Djg to
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establish the inequalities of (4.5). Now, since s is also the unique interpolant
of gin Sp(L, A, z) in the sense of (4.2), then applying (4.3),

K(.J)k+l-i+(1/Q)-(1/2l If g Ilw~+1[a,b]

>- jll Di(g - s)IILq[a,b] , 0 ~ j ~ k, p ~ q ~ 00, ()

y- III DiS IILq[a,b] ' if k <j ~ 2m - 1, p ~ q ~ 00. 4.9

Next, since II Dig IILp[a,b] ~ II Di(f - g)!ILp[a,b] + II DifIILp[~b] for 0 ~j ~ k,
the bounds of (3.10) directly give that II Dig IILp[a,b] ~ K(Ll)k-=: wp(Dkf, 3) .=t
Il DifllLp[a,b] for 0 ~ j ~ k, and that [Dk+1g IIL

p
[q,b1. ~ K(Ll)-l wr,(Dkf, A).

Hence, upon adding, II g Ilw~+1[a,b] ~ K{(A)-l wiDkf, A) + Ilfllw:[a,b]}' Thus,
substituting this bound in (4,9) then gives the desired inequalities of (4.5)
for the case °< k < 2m. Q.E.D.

It is worth noting that iffE Wpk[a, b] with 0 ~ k < 2m and 2 ~p ~ 00,

and if {Ai}::l E f!lJa(a, b) with limi~oo 3 i = 0, the above result of (4.5) of
Theorem 4.2 does not necessarily imply that limi~oo II Dk(f - si)IIL~[a,b] = 0,
where Si is the unique interpolant offin Sp(L, Ai, z(i), in the sense of (4.4).
However, if p = q = 2 or if wiDkf, 0) ~ KO(1/2)-(1/P)F(o) where F(o)...-+ 0
as 0...-+ 0, then limi~oo II Dk(f - si)IILp[a,b] = O. However, we shall later show
in Section 6 that, for smooth polynomial splines over uniform meshes, this
limit is zero without further restrictions.

Another case in which limi~oo II Dk(f - si)liL.[a,b] = 0 for f E Wl[a, b] is
that of Hermite L-splines (cf. Swartz and Varga [11, Section 6]), i.e., for the
L-spline space Sp(L, A, z) for which

with Zi = m, 0 ~ i ~ N.

The following result, derived in [11], but stated in a slightly weaker form
in [11, Corollary 6.2], is the starting point.

LEMMA 4.3. GivenfE W;+l[a, b) with 0 ~ k < 2m and 1 ~p ~ 00, and
given Ll E f!lJa(a, b), let s be the unique interpolant offin (cf. (4. 10» Sp(L, .1, z)
in the sense of

if k < j ~ m - 1, O,s;; i ,s;; N.

Then,

Di(f - s)(xi) = 0,

Dis(Xi) = 0,

°~j ~ minCk, m - 1), 0 ~ i ~ N,
(4.11)

K(3)k+l-i+(lfql-(l/P) II fll W~+1[a,b]

>- III Di(f - s)/ILq[a,b] ' 0 ~j ~ k, p ~ q ,s;; 00, (4,12)
y- III DiS IILq[a,b] , if k < j ,s;; 2m - 1, p,s;; q ,s;; 00.
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For polynomial splines, i.e., L = Dm, the term IIfllw;+l[a,b] can be replaced
in (4.12) by II Dk+Y'IILp[a,b] .

With Lemma 4.3 and Theorem 3.5, we then establish the following:

THEOREM 4.4. Given fE W/[a, b] with 0:(; k < 2m and 1 :(;p :(; 00,

and given A E f!J!aCa, b), let s be the unique interpolant off in Sp(L, ..1, z) in the
sense of (4.4) with Zi = m, 0 ~ i ~ N. Then, with h = 3,

K(.J)k-H(l/q)-<l/P) {wiDkf, 3) + (3)2m-k Ilfllwpk[a.b]}

III Di(j - s)IILq[a,b] , 0 ~j~. k - 1 if k > 0, p:(; q ~ 00,

~ II Dk(j - s)IILp[a,b] , j = k, p = q, (4.13)
II DiS IILq[a,b] , if k < j ~ 2m - 1, p ~ q :(; 00.

For polynomial splines, i.e., L = Dm, the term (.J)2m-k Ilfllw/[a,b] can be
deleted in (4.13).

Proof Assume k > 0, and let g E Sp(4m + 1, 2m + 1, ..1) be the unique
interpolant offin the sense of (3.6). Writing Di(f- s) = Di(f- g) + Di(g - s),
it suffices from (3.10) to suitably bound II Dj(g - s)IIL [a,b] for 0 ~j ~ k - 1

q

and p ~ q ~ 00. Next, s is by definition also the unique interpolant of g
in Sp(L, A, z), both in the sense of (4.11), as well as in the sense of

Di(g - S)(Xi) = 0, o :(; j :(; m - 1, 0:(; i :(; N.

As such, it follows from Swartz and Varga [11, Eq. (6.4)] that, for
x E [Xi, Xi+l] and for 0 ~j ~ 2m - 1,

II Dj(g - s)IILq[xj,Xi+l] ~ Kh~m-i+l!q{11 D2mg IILoo[xi,Xi+l] + II D2ms IILoo[xi,Xi+l]}'

(4.14)

Since L * Ls(x) = 0 in (Xi' Xi+l) and cm(x) ~ 0 > 0 for X E [a, b], we have,
as in [11], that

2m-l

II D2ms lkx>[xi,xi+l] ~ K I II D!s Ikx>[xi,Xi+l] ,
!~O

which, with the triangle inequality, yields

2m-l

II D2ms IILoo[Xi,Xj+l] ~ K I {II DI(S - g)IILoo[xi,Xi+l] + II DIg liLoo[Xi,Xi+l]}' (4.15)
!~O
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Because of the local character of Hermite L-spline interpolation, we can
apply (4.12) of LeI1lma 4.3 with q = 00, k = 2m - 1, and [a, b] = [Xi,
to ~ound the first termon the right of (4.15), i.e., II DI(S - g)IIL"fxi'x..;-l] ~

K(Ll)2m-Hl/p)II g llw''''[x x J for 0 ~ l ~ 2m - 1. The fact thatg isa poly-
11 .... i+l

nomial on [Xi, XHl] similarly allows us to bound the last term of (4.15) by
(cf. Swartz [10]) II DIg IlL [x x. ] ~ K(.d)-nlp) II DIg IlL [x x J. With these

.Xl ~. t+1 . p z' ~+1

bounds, (4.15) becomes

With the above bound, (4.14) becomes

il Di(g - s)IILqrxi.xi';-lJ ~ K(3)zm-J+n/Q)-(1/P) g Ilw~mf"""'i';-l] . (4.16)

Summing now on i and applying Jensen's inequality yields forO ~ j ~ 2f11- 1
and p ~ q,

Ii Di(g - s)IILia.bJ ~ K(2I)2m-J+(1/Q)-U/'P) II g ilw;;mfa,bl . (4.17)

To complete the proof, write

2m

II g Ilw;mfa.b] = I II Dig IILpfa.bJ
i~O

k ~

~ I {II Di(g - f)IILp[a,b] + II D'iIILpfa.~J} + I !i Dig ilLpfa.b) •
i~O i~k+l

Applying (3.10) of Theorem 3.5, then gives that

II g !IW~m[a.b] ~ J(Lfy'-2m w p(Dkj,.2I) -+ IIfllw;fa.~1 .

The above inequality, when combined with (4.16) and (3.10) of Theorem 3.5,
yields the desired first two inequalities of (4.13) for the case k > O. To obtain
the third inequality of (4.13) for the case k > 0, it suffices to write
Dis = J)1(s - g) + Dig, and to apply the same analysis. The case k = 0
can be similarly established with obvious modifications in the above
a.nalysis, Q.E.D.

As an immediate consequence of Theorem 4.4, we have the following:

COROLLARY 4.5. With the assumptions (J!Theorem 4.4, let {Ll,}~l E f!lJQ(a, b)
with limb"" .3i = 0, and let Si be the unique interpolant off in the Hermite
L-spline space SP(L, L1 i , iii) in the sense (Jf (4. H r Then, with the additional
hypothesis (cf. (2.3») that Dkf E Cora, b] ifp = 00,

~im 11 Dk(f - Si)I1Lv[a,b] = O. (4.18)
l~CQ
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It is interesting to remark that if f E W,/[a, b] with m :(; k < 2m, then
the unique interpolant s off in Sp(L, .1, z) in the sense of (4.4) is independent
of fh' and thus, this interpolant s is identical with the one considered in
Swartz and Varga [11] in their Theorem 6.1 and Corollary 6.2. Comparing
these results, we see that the special case p = OCJ of Theorem 4.4 above
essentially reduces to Theorem 6.1 of [11], the only change being that the
hypothesis thatfE Clc[a, b] in [11, Theorem 6.1] is weakened tofE W,,}[a, b]
in Theorem 4.4. Moreover, when m :(; k < 2m, Theorem 4.4 above sharpens
the corresponding result of Lemma 4.3 (cf. [11, Corollary 6.2]), with k + 1
replaced by k, in the following ways: (i) an upper bound for II Dlc(f - s)IIL,,[a,b]
is determined in Theorem 4.4 which is not provided by Lemma 4.3, and (ii) the
quantity Ilfllw "[a,b] in (4.12) of Lemma 4.3 is replaced in (4.13) of Theorem 4.4
by the smalle"r quantity (when .3~ 0): {w,P(Dlcf,.3) + (.3)2m-lc Ilfllw"k[a,b]}'
Finally, if fE W;m[a, b], a case already covered by Lemma 4.3, we remark
that the use of (2.4) in conjunction with the case k = 2m - 1 of (4.13) of
Theorem 4.4 gives the same upper bounds as in (4.12), i.e.,

K(.3)2m-H(ljql-<ljP) Ilfllw~m[a,b] ~ II Di(f - s)IILq[a,b] ,

o :(; j :(; 2m - 1, p:(; q :(; 00. (4.19)

We remark that the exponents of .3, as given in (4.13), cannot in general
be improved. This can be seen from counterexamples in Schultz and
Varga [8], Birkhoff, Schultz, and Varga [4], and Subbotin [12]. We further
remark that upper bounds for interpolation errors in terms of norms of
Besbv spaces, as described in Hedstrom and Varga [5], could also be readily
carried out here, but such extensions will not be considered further here.

5. STABILITY OF L-SPLINE INTERPOLATION

As discussed in Swartz and Varga [11], one can suitably perturb the data
defining an L-spline interpolant without affecting the nature of the original
error bounds for this interpolation. Such results are referred to as stability
results for L-spline interpolation (cf. [11]). We now give such a stability
result for the Hermite L-spline interpolation of Theorem 4.4 (which covers
the case of Lagrange interpolation, as discussed in [11]). Its proof is based
on the following slightly improved result of [II, Corollary 6.4].

LEMMA 5.1. Given .fE W;+1[a, b] with 0 :(; k < 2m and 1 :(; p :(; 00, and
given Ll E [JJJa(a, b), let s be the unique interpolant off in the Hermite L-spline
space Sp(L, Ll, z) such that

o :(; j :(; m - 1, 0:(; i :(; N, (5.1)
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where it is assumed that functions Fi(f, J), 0 ~ i ~ N, exist such that

251

K(LI)k+H FiCf, J)

?o II D1j(xi ) -.(Xul, .0:;:;:. j ~ min(k'n: - 1),
[ (Xi,i [, if k <.J ~ m - 1, 0 ~ I ~ N.

With

o~ i :;:;:N,
(5.2)

then

IIFllr - (.3 to F/(f, .3)t
r

, 1 ~ r < 00,

max(Fi(f, 21): 0 ~ i ~ N), r = 00,

(5.3)

K(.3Y,+1-}+ll/Q)-<l/P) {llfllw~+1[a,b] + II F!lp}

>-: \II Di(f - s)IIL.[a,b] , 0 ~ j ~ k, p ~ q ~ 00, (5.4)
:/' III Dis IIL.[a,bJ , if k < j ~ 2m - 1,Mp :;:;: q ~ 00.

For polynomial splines, i.e., L = Dm, lifilw=+1[a,b] can be replaced in (5.4)
by II Dk+:fIIL,,[a,b] .

The following application of Theorem 3.5 is then an improvement of the
above result.

THEOREM 5.2. Given fE Wpk[a, b] with 0 ~ k < 2m and 1 :;:;: p ~ 00,

and given LI E f!lJa(a, b), let s be the unique interpolant in the Hermite L-spline
space Sp(L, L1, z) in the Sense of (5.1), where it is assumed that functions
Fi(f, .3), 0 ~ i ~ N, exist such that

K(.3)k-i F;{f, 21)

!
1Dif(xi) - (Xi,i I, 0 ~j:;:;: min(k - 1, m - 1) (f k > 0, 0:;:;: i:;:;: N,

?o I D7cjh(Xi) - (Xi,7' I, j = k, if k:;:;: m - 1, 0:;:;: i ~ N, (5.5)
I (Xi,i I, if k < j ~ m - 1, 0 ~ i :;:;: N.

Then, with h = .3,

K(.3Y'-i+(l/Ql-ll/p) {(wp(Dkf, .3) + II Flip + .3 . IlfllW/[a,b])}

1
/11 Di(f - s)IIL.[a,b] , 0 :;:;:j ~ k - 1 if k > 0, p:;:;: q ~ 00,

?o II Dk(f - s)IILp[a,b] , j = k, p = q, (5.6)
II DisIIL.[a,b] , if k <j:;:;: 2m - 1, p:;:;: q:;:;: 00.

For polynomial splines, i.e., L = Dm, the term Ilfllwpk [a,bJ can be replaced
by II DkfllLp[a,b] .
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Proof Because of the similarity with past proofs, it is necessary only to
outline the basic idea of this proof. First, let u be the unique element in
Sp(4m + 1, 2m + 1, L1) such that

Diu(Xi) = Dif(Xi) - au, °~ j ::( min(k - 1, m - 1) if k > 0,

°~ i ~ N,
= Dklixi) - ai,k' j = k if k ~ m - 1, °~ i ~ N,

= -au, if k <j.~ m - 1, °~ i ~ N,

=0, m~j~2m, O~i~N, (5.7)

and let t be the unique interpolant of I in Sp(L, L1, z) in the sense of (4.4)
with Zi = m, °~ i ~ N. Thus, we can write that

1- s = (f - t) + u + [(t - s) - u], (5.8)

and we see by definition that t - s is the unique interpolant of u in Sp(L, Ll, z)
in the sense of (4.4). As such, we can directly apply the result of (4.12) of
Theorem 4.4 to (f - t), and the result of (5.4) of Lemma 5.1 to [u - (t - s)].
Because this last mentioned bound for [u - (t - s)] depends, from (5.4),
on II U Ilw~+l[a,b]' it is necessary to estimate II U Ilw~+1[a,b]' However, from
the hypotheses of (5.5), Lemma 4.3 of [11], due to Swartz [10], shows that
II u Ilw:+1[a,b] ~ K(LJ)-l II Flip, from which (5.6) then follows. Q.E.D.

As previously mentioned, the case for the Lagrange interpolation of data,
as described in [11], is effectively covered by the above stability result for
Hermite L-spline interpolation. Specifically, assume that IE Wpk[a, b] with°~ k < 2m, and that LI E &,ia, b) with N:> 2m - 1 (cf. (2.10)). Extending
I to an element in Wp k[2a - b, 2b - a] via (2.1) and similarly extending
the partition LI to a partition 3 in &(J(2a - b, 2b - a), we can associate
with each knot Xi of LI in [a, b], 2m - 1 consecutive knots of 3, say
Xi+! , Xi+2 ,... , Xi+2m-l, to its right. If L 2m- 1,J denotes the Lagrange inter
polation ofI of degree 2m - 1 in these consecutive knots, in the sense that

(L2m-l,if)(Xi) = f(Xi)'

(L2m-l,d)(xj) = Ih(Xi),

i ~ j ~ i + 2m - 1, if k > 0,

i ~ j ~ i + 2m - 1, if k = 0,
(5.9)

then let s be the unique interpolant of I in the Hermite L-spline space
Sp(L, Ll, z) such that

°~j ~ m - 1, °~ i ~ N. (5.10)

In other words, s is the interpolant of (5.1) with (Xi,j - Di(L2m_l,d)(xi).
From known error bounds for Lagrange interpolation (cf. [11, Corollary 4.2]),
it can be shown that the conditions of (5.5) of Theorem 5.2 are fulfilled, and
that II Flip ~ KwiDkJ, LJ). This then establishes the following:



SPLINE AND L-SPLINE INTERPOLATION 259

COROLLARY 5.3. Given fE Wpk[a, b] with 0 ~ k < 2m and 1 ~p ~ co,
and given Ll E f!lJa(a, b) with N ~ 2m - 1, let s be the unique Hermite L-spline
interpolant off in the Lagrange sense of (5.10). Then, with h = 3 if k = 0,

K(3)k-H(l/Q)-(l/P) {Wp(Dkf, 3) + 3 . llfllw/[a.b]}

l
'I,D:(.f-S)"Lq[a.b] , ~~j~k-l if k>O, p~q~co,

~ II D (.f - s)IILp[a.b] , ] = k, p = q, (5.11)
II Djs IILq[a,b] , if k <j ~ 2m - 1, p ~ q ~ co.

lt is interesting to note from the definition of the Lagrange interpolation
in (5.9) that, for f E Wpk[a, b] with k > 0, the Hermite L-spline interpolant s
of (5.10) is independent of fh. In this case, this interpolant s agrees with
the Lagrange-type Hermite L-spline interpolant considered in [11, Corol
lary 6.4], and again, the above result of (5.11) of Corollary 5.3 sharpens the
corresponding result of [11, Corollary 6.4].

A result similar to Theorem 5.2 can also be easily deduced for general
L-spline interpolation, but for brevity, this is omitted. The following special
case of Corollary 5.3, however, is included.

COROLLARY 5.4. With the assumptions ofCorollary 5.3, let {Lli}~l E f!lJaCa, b)
with limi~'" 3 i = 0, and let Si be the unique interpolant off in the Hermite
L-spline space Sp(L, Ll i , z(il) in the Lagrange sense of (5.10). Then, with the
additional hypothesis that Dkf E CO[a, b] ifp = 00,

~im II Dk(.f - si)IIL [a,b] = 0. (5.
l---':?ro p

6. POLYNOMIAL SPLINE INTERPOLATION OVER UNIFORM MESHES

As in Section 8 of Swartz and Varga [11], consider any set of 2m reaLpoint
functionals B = {Bj};:'o-l on Wim[a, b], called boundary conditions, of the
form

2m-l

Bjg = l: {aj.iDig(a) + bj.iDig(b)},
i~O

o~j ~ 2m - 1, (6.1)

where g E W;m[a, b]. If the 2m X 4m matrix M is defined by

M=

we assume that

l
ao,o
al,O

a2m'-l ,O

bo,o aO.l bo,l ...

rankM = 2m,

b
O

•

2m

-

l Jbl ,2m_l. ,

b2m-~.2m-l

(6.2)

(6.3)
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i.e., the functionals {Bj}~=O-l are linearly independent. We further assume
that any g E W;m[a, b] withBjg = 0, 0 ~j ~ 2m - 1, satisfies

b fbf (Dmg(t))2 dt = (_l)m . g(t)· D2mg(t) dt.
a a

(6.4)

Finally, as in [11], there is no loss of generality in assuming that, by means
elementary row operations, applied to M, the matrix M is in lower reduced
echelon form, i.e.,

(i) every leading entry (from the right) of each row is unity;

(ii) every column containing a leading entry (from the right)
has all other entries zero; (6.5)

(iii) if the leading entry (from the right) of row i is in column t i ,

then t1 < t2 < ... < t2m .

We remark that the elementary row operations which bring M into lower
reduced echelon form leave the property of (6.4) invariant. We further
remark that a special case of boundary conditions B = {Bj n=ol which do
satisfy (6.3)-(6.5), are given by the so-called Hermite boundary conditions,
defined by

B2j g = Dig(a), B2i+lg = Dig(b), 0 ~j ~ m - 1. (6.6)

Other examples of such boundary conditions satisfying (6.3)-(6.5) are cited
in [11].

We now state a particular result of Swartz and Varga [11, Corollary 8.11].

LEMMA 6.1. Given fE W;+l[a, b], with 0 ~ k < 2m and 2 ~p ~ 00,

given Ll E f?l\(a, b) with N > m (cf. (2.10)), and given the point functionals
{Bj}~=O-l of the form (6.1) which satisfy (6.3)-(6.5), let s be the unique inter
polant off in Sp(2m - 1, 2m - 1, Ll), in the following Sense:

1 ~ i ~ N - 1,

Then,

k

Bjs = L {aj,iDif(a) + buDif(b)},
i~O

0~j~2m-1.

(6.7)

K(2f)k+l-i+(l/Q>-(l/P) II Dk+YIILp[a,b]

;?: III Di(f - s)IILq[a,b].' 0 ~ j ~ k, p ~ q ~ 00, (6.8)
II D 1s IILq[a,b] , if k <J ~ 2m - 1, P ~ q ~ 00.

The proof of the following result, based on Lemma 6.1 and Theorem 3.5,
is similar to previous proofs given, and is therefore omitted.
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THEOREM 6.2. Given fE Wz,k[a, b], with 0< k < 2m and 2<p < 00,

given L1 E f7l1(a, b) with N > m, and given the point functionals {Bjn:,;l of the
form (6.1) which satisfy (6.3)-(6.5), let s be the unique interpolant off in
Sp(2m - 1, 2m - 1, Ll), in the following sense:

(f - S)(Xi) = 0,

Un - S)(Xi) = 0,

1 < i < N - 1, if k > 0,

1 < i < N - 1, tr k = 0,
k-1

Bjs = L {aj,iDif(a) + bj,iDif(b)} + {aj,kDkfn(a) bj,kDkj,,(b)} (6.9)
i~O

o< j < 2m - 1, if k > 0,

O<j<2m-l, if k=O.

Then, with h = 3,

K(3)k-H(1/Q)-(l!P) wiDkJ, 3)

III Dj(f - s)IILq[a,b] ' °<j <k - 1 if k > 0, P < q < 00,

? II Dk(f - s)IILp[a,b] , j = k, p = q, (6.10)
II Djs IILq[a,b] , if k < j < 2m - 1, p < q < 00.

COROLLARY 6.3. With the assumptions ofTheorem 6.2, let {Lli}f=l E f7l1(a, b)
with 1imi~oo 3 i = 0, and let Si be the unique interpolant of f in Sp(2m ......,. 1,
2m - 1, Ll i ) in the sense of(6.9). Then, with the additional hypothesis (cf. (2.3»
that DkfE Cora, b] ifp = 00,

~im II Dk(f - si)liL [a,b] = 0.
l-HJO P

(6.11)

It is interesting to remark that if the point functionals B j of (6.1) depend
only on Dig(a) and Dig(b) for 0 < i < T < 2m - 1, i.e., aj,i = bj,i = 0
for aU °<j < 2m - 1, T + 1 < i < 2m - 1, and if fE W,/[a, b] with
T < k < 2m - 1, then the unique interpolant s offin Sp(2m - 1, 2m - 1,
in the sense of (6.9), is independent of fn . In this case, the interpolants s in
Sp(2m - 1, 2m - 1, Ll), as defined by (6.7) and (6.9), are identical, and
the error bounds of (6.10) represent a sharpening of the error bounds of
(6.8) (with k replaced by k - 1). If, moreover,f E W;m[a, b] with 2 < p < 00,

a case already covered in Lemma 6.1, we again remark that the use of (2.4)
in conjunction with case k = 2m - I of (6.10) of Theorem 6.2 gives the
same upper bounds as in (6.8), i.e., for p < q < 00,

o <j < 2m"""" L
(6.12)
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We further remark that the inequality of (6.12) in the case j = °has been
shown by Scherer [9, Theorem 9] to hold for more general partitions of [a, b]
than uniform partitions. In addition, if m = 2 or m = 3, i.e., if cubic or
quintic splines are considered, it is easy to show that (6.10) is valid for
Ll E fYia, b) for any a ~ 1.

7. EVEN DEGREE ApPROXIMATION BY LOCAL INTEGRATION

Several authors (cf. Anselone and Laurent [3], Scherer [9], and Varga [13])
have considered the approximation of a given smooth functionf, defined on
[a, b], by even-ordered splines s which, for a given partition Ll of [a, b],
interpolatesfby means of S::+1 (f - s) dx = 0, 0:(: i :(: N - 1, in addition
to certain specified boundary interpolation. The object of this section is to
derive new error bounds for such interpolation, based on the results of the
previous section.

In analogy with Section 6, consider now any set of 2m + 2 real point
functionals B = {Bj}~:'dl on w;m+2[a, b], of the particular form

2m+1

Bjg = L {aj,iDkg(a) + bj,iDig(b)},
i'=l

(7.1)
2:(:j:(:2m+ 1, gEW:m+2[a,b],

where it is assumed that the associated (2m 2) X (4m + 4) matrix M
satisfies all the hypotheses of (6.3)-(6.5), with m replaced by m + 1. Note
that since Bog = g(a) and BIg = g(b) from (7.1), then the assumption of
(6.5ii) implies that the slim for Bjg in (7,1), 2 :(:j :(: 2m + 1, begins with
i = 1. For any1E w;m+2[a, b] and for any partition of [a, b] with N > m + 1,
it follows from the discussion in Section 6 that there is a unique g in
Sp(2m + 1, 2m + 1, Ll) which interpolates1in the sense that

(f - S)(Xi) = 0,

Bl = Bd,

°:(: i :(: N,

2 :(: j :(: 2m + 1.
(7.2)

In particUlar, iflex) = S:f(t) dt, so thatfE W:m+l[a, b], let.f be the unique
interpolant of lin Sp(2m + 1, 2m + 1, Ll) in the above sense, and define
sex) = D.f(x). Clearly, SE Sp(2m, 2m, Ll), and it directly follows from (7.1)
and (7.2) that

{'HI (f - s) dt = 0,
xi

Bjs = Bjf,

°:(: i :(: N - 1,

2 :(:j :(: 2m + 1,

(7.3)



where

SPLINE AND L-SPLINE INTERPOLATION

2m
Bd - Ed = L {aj,i+1Dif(a) + bj,i+1Dif(b)},

i~O
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2 ~j ~ 2m - 1, fE W:m+l[a, b]. (7.4)

Conversely, it is readily verified that, for any fE W:m+1[a, b], there is a
unique S E Sp(2m, 2m, L1) which interpolatesfin the sense of (7.3).

Since our construction yields Di(f - s)(x) == Di+1(j - S)(x), then the
bounds of (6.10) of Theorem 6.2 can be directly used to prove the following
result which extends the results of Scherer [9, Theorem 10] and Varga [13].

THEOREM 7.1. GivenfE Wpk[a, b], with 0 ~ k < 2m + 1 and2 ~p ~ 00,

given LI E :21\(a, b) with N > m + 1, and given the point functionals {B j};:'t
of (7.1) which satisfy (6.3)-(6.5), let s be the unique interpolant of f in
Sp(2m, 2m, L1), in the following sense:

{'HI (f - s) dt = 0,
Xi

o ~ i ~ N - 1,

k-l

Bjs = I {aj,i+lDif(a) + bj,i+lDij(b)} + {aj,k+lDhfh(a) + bj,k+lD1'fh(b)},
i=O

2 ~ j ~ 2m + 1, if k > 0,

2 ~ j ~ 2m 1, if k = O.Bjs = ai,dh(a) + bj,dh(b),

Then, with h = .3,

K(.3)k-i+(lfq>-(l/P) wp(Dkj, .3)

!
II Di(f - s)IILq[a,b]'

~ II Dk(f - s)IILp[a,b] ,
II Dis IILq[a,b] , if

O~j~k-l, p~q~oo,

j = k, p = q,
k < j ~ 2m, p ~ q ~ 00.

(7.6)

~im II Dk(f - si)IIL [a,b] = O.
1--')00 P

COROLLARY 7.2. With the assumptions ofTheorem 7.1, let{L1i}~~l E q\(a,
with limi~oo .3i = 0, and let Si be the unique interpolant off in Sp(2m, 2m, .1;)
in the sense of (7.5). Then, with the additional assumption that Dkf E CO [a, b]
ifp = 00,

Making use once more of (2.4), we also have from (7.6) the result of

COROLLARY 7.3. GivenfE W;m+1[a, b], 2 ~ p ~ 00, and the assumptions
of Theorem 7.1, then

K(.3)2m+l-i+(l/Q)-<1/P) II D2m+lfliLp[a,b] ~ II Di(f - s)IILq[a,b] ,

o ~ j ~ 2m, p ~ q ~ 00. (7.8)
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We remark that this simple idea, viz. that of obtaining error bounds for
spline interpolation in Sp(2m, 2m, Ll) by considering the derivative of an
associated interpolation error in Sp(2m + 1, 2m + 1, Ll), can also be
extended to L-spline-like interpolation where the interpolant is defined
locally as the solution of an odd-ordered ordinary differential equation.
It is also clear that a stability analysis for even-ordered splines, Le.,
where S E Sp(2m, 2m, Ll) interpolates approximate data for fE Wvk[a, b],
o~ k < 2m + 1, can also be easily carried out, in analogy with the results
of Section 5. This permits one, as in Scherer [9, Theorem 10], to replace the
integrals f:;+lf dt in the first equation in (7.5) with suitable quadratures,
with no change in the form of the error bounds of (7.6).
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